
Design and Prototyping Group
Case Study 

Data acquisition for machine learning 
can be costly due to the large quantities 
of high-quality, unbiased data required 
to train a state-of-the-art model. 
Machine learning based object detection 
algorithms can require thousands of 
hand-labelled example images before 
they can reliably detect objects in images; 
collecting and labelling this data is a 
significant time investment.

This case study summarises the research 
completed by the University of Sheffield 
Advanced Manufacturing Research Centre 
(AMRC) Design and Prototyping Group’s 
digital design team to create a tool enabling 
the automated generation of labelled 
synthetic data for training machine learning 
object detection algorithms.

Generating synthetic data to 
train accurate AI object detection



The problem
The training of an accurate artificial intelligence (AI) 
object detection and classification model requires an 
extensive dataset consisting of hundreds of labelled 
image examples in various environments and contexts.
One of the most famous public datasets, COCO 
(Common Objects in Context) contains over 200,000 
labelled images containing over 1.5 million objects 
across 80 different classes. Training a custom dataset is 
normally done via transfer learning of a model already 
trained on a dataset such as COCO and thus requires 
far fewer examples to fine tune to the new classes. 
Many example images are still required to accurately 
differentiate and detect new objects added to the 
dataset.

Creating and labelling hundreds of images per class is 
a very time consuming task, especially if the end use 
case or implementation has a large number of unique 
objects to detect. The images must also be hand labelled 
with either bounding boxes or semantic pixel labels by a 
person before the data can be used for training a model 
at the expense of more development time and cost.

The AMRC Design and Prototyping Group’s digital design 
team have developed a proof-of-concept tool to address 
this problem. The tool is capable of generating the data 
required for training a model using only CAD data and 
some background images to put the object in context of 
where it will be detected in the final application of the 
machine vision system.

Figure 1: An example of semantic segmentation.

Figure 2: An example of AI image detection 
and classification on people.

C
re

di
t:

 F
au

ng
g’

s 
ph

ot
os

, F
lic

kr
. (

C
ha

ng
es

 m
ad

e 
to

 im
ag

e,
 r

ig
ht

).
 

w
w

w
.fl

ic
kr

.c
om

/p
ho

to
s/

44
53

42
36

@
N

0
0

/



What makes a good dataset?
A good dataset not only contains a large number of 
images, but those images also have to be representative 
of objects to be detected in the context you want to 
detect them in. For example a training set of scissors 
only on a red background may not generalise well 
to scissors on other coloured backgrounds. This is 
also true of lighting conditions, object orientation, 
occlusion, and size; however, some of these issues can 
be addressed in training via augmentation. The dataset 
should also have an even spread of examples for each 
class, if the network is 90 per cent one class then it 
could achieve 90 per cent accuracy by always predicting 
that class. Skewed class frequency can lead to low 
confidence values on the underrepresented classes and 
confusing items for the more common classes.

The subject of the image does not necessarily need 
to be clear and obviously the focus of the image. In 
fact, it is quite the opposite for some object detection 
applications. The subject of the detection should appear 
as it would in an end use case scenario. If the object you 
are attempting to detect is often half obscured then 
the training examples should also be half obscured. So 
that an accurate and unique feature map of the object 
can be learned during training a sample of the full range 
of possible characteristics should be present in the 
training set. This is true of all characteristics, such as 
lighting conditions, image contrast, object posing and 
subject size.

It is important that if an object can be posed, then all 
possible poses of the object are captured in the training 
data. For example with a pair of surgical scissors, if 
none of the images in the training set captured the 
scissors fully opened, the model cannot be expected 
to recognise the opened pair as the same object. This 
can also be extended to object orientation so the object 
can be recognised from all angles, objects that come in 
different shapes or colours, and objects of varying size.

Lighting conditions in particular can prove problematic 
due to reflections, lens flares or coloured lighting 
disrupting the detection. If ideal lighting conditions 
are used when capturing the training data the model 
will have trouble detecting the objects in other 
environments. Effort should be made to capture images 
of the object with various levels of contrast and light 
sources of varying brightness, although this can be 
somewhat accounted for with digitally altering the 
contrast later.

Image quality and resolution are less of a problem as 
long as the object is large enough to be resolved. In most 
image based AI detectors the image is downsampled to 
a fixed smaller resolution to maximise processing speed 
and efficiency. This also combats problems of low detail 
on objects as the model will learn other characteristics.

The quality of the labelling is a very important aspect of 
a good data set. Most object detection algorithms use a 
bounding box detection system where a rectangular box 
is drawn around the object and it is given a class label. 
Other systems, such as semantic segmentation, give a 
label to each pixel in the image. The process of labelling 
a dataset involves manually drawing the bounding box 
around each class and giving that box a class label, eg. 
“car”. There are numerous tools available for image 
labelling and differing levels of detail. The fastest way 
is a rectangular bounding box dragged around each 
class such as the images in Figure 2, however more 
complex polygons or exact pixel level labeling can be 
done for high-precision applications such as biomedical 
imaging [1].

Augmenting a dataset is done to improve its quality and 
increase model performance. Augmenting a dataset 
means perturbing the image in some way, this is done 
as it is passed into the network, with the goal of making 
the model more robust. An example of augmentation 
is adjusting the contrast on an image during training 
to make the network more capable of dealing with 
various lighting conditions. Other forms of augmentation 
include cropping, skewing, rotating, or adding noise to 
the image. Some of these changes such as skewing or 
rotating also require the image labelling to be adjusted 
in the same way to match the newly augmented image.

Ronneberger et al 2015 pg. 5 [1] states why image 
augmentation was needed for their specific needs:

“Data augmentation is essential to teach the network 
the desired invariance and robustness properties, when 
only few training samples are available”

Augmentation is invaluable for bespoke applications 
where large datasets are not available.



The standard process
The traditional process of dataset generation typically 
begins with capturing the photographs of the objects 
that will be the subject of the vision system. As 
previously mentioned, the objects would ideally be in 
similar context to what they will be detected in, and in a 
variety of poses, positions, and lighting conditions, which 
can be time consuming for a large number of images. 
In some cases video can be taken and each frame of 
the video can then be extracted for labelling which can 
speed up the acquisition of images. This still takes up 
a substantial amount of time post-processing and may 
not be ideal as it is unlikely to accommodate changes in 
lighting conditions and similar environmental effects.

Once the images are captured they must be labelled 
before they can be used for training, this is normally 
completed manually. Depending on the models that will 
be used, the labelling will be slightly different. A simple 
classifier model will only require a label for the entire 
image, such as a classifier that determines if the image 
is that of a dog or a cat. Common object detection 
networks will place bounding boxes and classes on 
individual objects within the image, therefore they 
require objects to be labelled using bounding boxes 
which, as explained above, involves manually drawing the 
box and labelling each object in each photo captured. 

One further step up from this would be labelling for 
semantic segmentation models. These models give a 
label to each pixel in the image and so require precise 
class labels to be painted onto the image. An example 
of semantic segmentation labelling is shown in Figure 1. 
Pixel labelling can also be used as rectangular bounding 
box labelling.

Augmentation is the final step once a dataset has been 
labelled. This augmentation can be done explicitly before 
training to increase the size of the dataset or it can 
be done during runtime, automatically modifying the 
image as it is used as a training example. The former 
method allows the data to be inspected before training 
and requires the augmented images to be stored but 
the latter ensures each example is unique across many 
training runs and does not require any additional 
storage space. The examples being generated at runtime 
is a double-edged sword, while it means the examples 
are always new, which is useful for additional training or 
fine tuning, it also means the dataset is not available for 
debugging or troubleshooting later. 

Figure 3: An example of object detection and classification on traffic. This data can be useful for smart adaptive 
traffic systems.



Review of similar methods
The data acquisition problem has been addressed 
both commercially and in academia previously with 
various machine vision goals in mind. Planche et al. 
2017 [2] demonstrated a synthetic dataset generation 
pipeline specifically for estimating depth in images 
using CAD data. Their method focused on recreating 
the characteristics and artefacts from real world depth 
scans in their synthetic data. They demonstrated that 
their method was more capable, in some cases, than the 
state-of-the-art at the time for training these models. 

Wong et al. 2019 [3] also created a data synthesis pipeline 
with the goal of training a machine vision system to 
recognise supermarket products in a warehouse setting. 
Their framework used photogrammetry to create the 
3D data which was then used to create the synthetic 
images for training. They started with photographs of 
real objects, generated a 3D representation using these 
photographs, and then synthesised the 2D images in the 
datasets from these. Similarly to Planche et al 2017 [2], 
they showed that generating this data saved time and 

effort compared to manually capturing and labelling a 
traditional dataset. 

There are certain applications where synthetic data is 
much more desirable due to the inability or difficulty 
of acquiring human labelled data. Mayer et al. 2018 [4] 
shows just an example with stereo video data for optical 
flow or stereo disparity. 

Mayer et al 2018 pg. 1 [4]:

“The dominant data acquisition method in visual 
recognition is based on web data and manual 
annotation. Yet, for many computer vision problems, 
such as stereo or optical flow estimation, this approach 
is not feasible because humans cannot manually enter a 
pixel accurate flow field”

Hence synthetic data being the only option for some 
applications and perhaps opening the doors to many 
new applications.

Figure 4: An example of classification and bounding box data generated by detection.



Innovation
The AMRC Design and Prototyping Group digital design 
team have developed a tool to speed up the process of 
dataset generation by automatically creating labelled 
renders of objects from their CAD data. These renders 
can be used as a replacement for photographs for 
training machine vision models. The tool is capable of 
generating 100 1080p renders with bounding box data 
in 11 minutes. The tool uses OBJ files with materials and 
more optimised model files make for faster renders. 
The tool is built in Python and uses the Blender API to 
generate the renders of the CAD models from a random 
angle then places the render on a randomly selected 
background image for context. 

The process starts by loading the CAD model into a 
new blender scene via script using the Blender API, 
then a chosen number of points around the object are 
selected to be the camera angles for the renders. The 
camera angles are chosen to be random points on a 
sphere surrounding the object, where the radius of the 
sphere is also varied randomly between a minimum 
and maximum to provide the dataset with renders from 
various distances.

The light source within the scene is given a random 
rotation before each render is executed. The bounding 
box data is then extracted from the scene by converting 
the vertex coordinates in scene space to 2D screen 

space coordinates and selecting the furthest most top, 
bottom, right, and left points. These coordinates are 
then translated into the desired format required by the 
model used for training and are saved in a companion 
file for each image rendered.

After a render is complete it is overlaid on a background 
image randomly selected from a folder of images and 
saved. An example of a render can be seen in Figure 5. 
The background photographs were taken to be suitable 
context for the use case, however any image can be 
used. Ideally these background contextual images could 
also be added to a wider collection or library that can be 
used for future dataset generation. 

The tool was used to generate a dataset of 600 images, 
100 for each class for a set of surgical tools. The dataset 
was then used to train a YOLOv5 object detection model 
(Ultralytics YOLOv5) successfully. For the examples 
shown below the model was trained for 200 epochs with 
a 500/100 train/validation split taking ~1.5 hours using 
an Nvidia RTX 3080 graphics card. The trained model 
was capable of detecting the surgical tools in real images 
despite only being trained on the renders generated by 
the tool.

Figure 5: Example image of a render of forceps generated via the dataset generation tool.



Figure 6: Image showing the output of the trained model 
using a real image of forceps as the input. The model 
successfully locates the forceps and classified them with 
92 per cent confidence. 

Result
Figure 6 shows an example of the model’s output for a 
real image. In this example the forceps were successfully 
located and classified. Despite the small training set 
and short training time the model was capable of 
generalising from CAD renders to real world images 
extremely well. Unlike real world example images the 
tool only uses one object per render. This did not prove 
to be an issue as during training the images are stitched 
together in batches and randomly cropped and/or 
shifted to further augment the dataset and aid in model 
generalisation. 

However, the model does not generalise perfectly, 
Figure 7 shows a miss-classification of a retractor as 
tweezers. Figure 5 shows a more common problem 
where an object is given multiple classifications on 
top of each other. The double classification error is 
common between scissors and forceps, which are 
two very similar objects. This confusion between 
scissors and forceps is a problem that is also present in 
networks that were trained on labelled photographs The 
misclassification is unavoidable at certain viewing angles 
due to the close similarity of their shapes and features.

Figure 7: Image showing the model output for a 
photograph of a retractor. The model misclassified the 
retractor as a pair of tweezers.

Figure 8: An image showing the output of the model 
for an image of scissors and forceps. Note the double 
classification of the forceps in the middle as both 
scissors (dark green bounding box) and forceps (blue 
bounding box).



Impact
The proof of concept tool shows promise and the 
results from the model show that a virtually generated 
dataset can be used to train a model to detect real 
objects. Through further training and refinement of 
the generated renders that are created by the tool, 
the results can be improved for solely virtual dataset 
training, or the dataset can be merged with real labelled 
photographs. 

In testing, the model performs comparably to a network 
trained solely on traditionally labelled photographs. 
Images with visual characteristics not generated in the 
renders created by the tool in its current form, such as 
overexposure or reflections, can be troublesome for 
the trained model. This is an argument for combining 
real data with the synthetic generated images, and also 
highlights potential improvements to the tool.

This tool can be used to save hundreds of hours 
capturing and hand labelling photographs of objects 
or the costs involved in outsourcing this work. If the 
CAD and suitable background images are available, the 
tool can be used to generate a dataset in its entirety 
or to bulk out an existing set for a more robust model. 

The label data is not subject to human error and the 
bounding boxes are pixel perfect, depending on the 
size of the CAD models the hundreds of images can 
be generated in minutes in comparison to traditional 
methods of dataset generation which can take hours.

As a specific example, capturing and labelling a dataset 
of 500 images could take a single engineer 5+ hours 
depending on the number of objects per image, 
however, this tool could generate 500 labelled renders 
in under an hour.

The tool does not require the user’s attention during 
this time, so could be used overnight, out of hours or 
set up to be created automatically when new parts or 
products are being designed as an additional output. 
Even when accounting for the overhead of capturing 
appropriate background images, the synthetic data can 
be generated many times faster than a real dataset.

Figure 9: An example of the trained models being used to run a digital shadow board. The surgical tools are detected 
and compared against a previously made checklist of tools.



For further information please contact Scott Herod:

0114 222 9588 s.herod@amrc.co.uk amrc.co.uk

Further work
As stated above, there are certain shortcomings of the 
tool in its current form, as well as potential applications 
that require further testing and development. From 
this point the digital design team would like to take 
the tool further with more development work and the 
opportunity to test it in an industrial environment.

The tool’s functionality can be expanded to include more 
expansive render options, more realistic visuals, and 
more model compatibility. Increased visual fidelity will 
further increase performance of models trained on the 
generated data and improve the tools applicability to 
use cases that require it. The data output formats can 
also be expanded so that other formats are supported. 
Currently only bounding box information is saved 
in YOLO format, however this can be expanded and 
the choice can be given to the user for what format 
they require. 

Another feature and possibly primary focus could 
include deforming or adding simulated wear and tear via 
texturing of the CAD model. This means the tool could 
be used to train models for defect detection in images 
on the models given.

As the tool in its current form is mostly driven using 
command line, the primary goal of further development 
would be to improve the usability of the tool, by giving 
the script pipeline a user interface to enable quick and 
easy use of the tool would be a large improvement and 
the first step to implementing the tool in an industrial 
environment. The user interface could be used to 
modify settings in the render and select the models, 
background images and other customisation options.

References

[1] Ronneberger, O., Fischer, P. and Brox, T., 2015, 
October. U-net: Convolutional networks for biomedical 
image segmentation. In International Conference on 
Medical image computing and computer-assisted 
intervention (pp. 234-241). Springer, Cham.

[2] Planche, B., Wu, Z., Ma, K., Sun, S., Kluckner, S., 
Lehmann, O., Chen, T., Hutter, A., Zakharov, S., Kosch, 
H. and Ernst, J., 2017, October. Depthsynth: Real-time 
realistic synthetic data generation from cad models for 
2.5 d recognition. In 2017 International Conference on 3D 
Vision (3DV) (pp. 1-10). IEEE.

[3] Wong, M.Z., Kunii, K., Baylis, M., Ong, W.H., Kroupa, 
P. and Koller, S., 2019. Synthetic dataset generation for 
object-to-model deep learning in industrial applications. 
PeerJ Computer Science, 5, p.e222.

[4] Mayer, N., Ilg, E., Fischer, P., Hazirbas, C., Cremers, 
D., Dosovitskiy, A. and Brox, T., 2018. What makes good 
synthetic training data for learning disparity and optical 
flow estimation?. International Journal of Computer 
Vision, 126(9), pp.942-960.


